Learning to rank

Results: 420



#Item
151Query expansion / Relevance / Session / Information science / Information retrieval / Learning to rank

ICTNET at Session Track TREC2014 Yuanhai Xue1,2,3, Guoxin Cui1,2,3, XiaomingYu,2, Yue Liu1,2 , Xueqi Cheng1,2 1)Institute of Computing Technology, Chinese Academyof Sciences, Beijing, KeyLaboratoryof Web Data Sc

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:36
152Relevance / Learning to rank / Text Retrieval Conference / Precision and recall / Search engine indexing / Federated search / Document retrieval / Search engine / Discounted cumulative gain / Information science / Information retrieval / Science

Opinions in Federated Search: University of Lugano at TREC 2014 Federated Web Search Track Anastasia Giachanou1 , Ilya Markov2 and Fabio Crestani1 1

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:38
153Natural language processing / Computational linguistics / Learning to rank / Machine learning / Recommender system / Relevance feedback / Foursquare / Stemming / Information science / Information retrieval / Science

University of Glasgow at TREC 2014: Experiments with Terrier in Contextual Suggestion, Temporal Summarisation and Web Tracks Richard McCreadie, Romain Deveaud, M-Dyaa Albakour, Stuart Mackie, ⇤ Nut Limsopatham, Craig M

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:38
154Twitter / Relevance / Learning to rank / Precision and recall / Query expansion / Information science / Information retrieval / Relevance feedback

QCRI at TREC 2014: Applying the KISS principle for the TTG task in the Microblog Track Walid Magdy Wei Gao

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:37
155Information retrieval / Knowledge / Special Interest Group on Information Retrieval / Association for Computing Machinery / Learning to rank / Machine learning / Data mining / Browse / Jaime Teevan / Science / Information science / Natural language processing

Paul N. Bennett Senior Researcher, CLUES Microsoft Research One Microsoft Way Redmond, WA 98052

Add to Reading List

Source URL: research.microsoft.com

Language: English - Date: 2015-02-20 14:47:42
156Learning to rank / Text Retrieval Conference / Twitter / Tf*idf / Relevance / BM25 / Language model / Data mining / Information science / Information retrieval / Science

ICTNET at Microblog Track in TREC 2014 Guoxin Cui1,2,3, Fabin Shi1,2,3, Xiaolei Liu1,2,3, Xiaobo Hao1,2,3, Xueke Xu1,2, Yue Liu1,2 , Xueqi Cheng1,2 1)Institute of Computing Technology, Chinese Academyof Sciences, Beijing

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:36
157Learning to rank / Interpolation / Science / Information science / Natural language processing / Information retrieval

Exploration of Opinion-aware Approach to Contextual Suggestion Peilin Yang and Hui Fang Department of Electrical and Computer Engineering University of Delaware, USA {franklyn,hfang}@udel.edu

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:38
158Learning to rank / Cluedo / Games / Information science / Comma-separated values

Overview of the TREC 2014 Contextual Suggestion Track Adriel Dean-Hall University of Waterloo Charles L. A. Clarke University of Waterloo

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-19 14:29:20
159Spamming / Information retrieval / Natural language processing / Link analysis / Reputation management / PageRank / Email spam / Spam / Learning to rank / Internet / Computing / Information science

SNUMedinfo at TREC Web trackSungbin Choi, Jinwook Choi Medical Informatics Laboratory, Seoul National University, Seoul, Republic of Korea ,

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:37
160Human–computer interaction / Internet / Information retrieval / User interface techniques / Android software / Foursquare / Yelp /  Inc. / Google / Text Retrieval Conference / Computing / Software / Natural language processing

Applying Learning to Rank Techniques to Contextual Suggestions Julia Kiseleva1 Jaap Kamps2 1

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2015-02-09 16:44:35
UPDATE